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Abstract

This paper compares a semi!analytical self!similar solution of the problem of a hydraulically driven
fracture with results obtained using the numerical model Loramec[ The problem under consideration is a
hydraulic fracture propagating in an in_nite impermeable elastic medium under plane strain conditions[ The
fracture is driven by an incompressible Newtonian ~uid injected\ at a constant rate\ from a source located
at the center of the fracture[ There are some di}erences between the two models in regard to the modeling
of the near tip processes[ The semi!analytical solution is built on the assumptions that the fracture is
completely _lled by the injection ~uid and that the solid has zero toughness\ while the numerical model
explicitly accounts for the existence of a priori unknown lag between the ~uid and crack front[ It is shown
that the numerical results exhibit self!similarity^ in particular the predicted power law dependence on time
of the net pressure\ aperture and fracture length is well observed in the numerical results[ Also\ a very good
agreement between the self!similar and the numerical solution is observed under conditions of {small|
toughness[ The results of this study actually suggest that the self!similar zero toughness solution is a good
approximation to cases where the rock has a non!zero fracture toughness and a ~uid lag develops\ provided
that the ratio u of the rate of energy dissipation in the solid over the viscous dissipation in the ~uid is less
than 09−1[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

D dimensionless viscous dissipation
E? plane strain modulus
G dimensionless energy release rate
KIc toughness
K dimensionless toughness
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L characteristic length
l half!fracture length "length of one wing#
p net pressure
pf ~uid pressure
q ~ow rate
Qo constant injection rate
T characteristic time
t time
x space coordinate with origin at the center of the fracture
w crack opening[

Greek symbols
g volumetric constant
u solid to ~uid dissipation ratio
l dimensionless fracture length
m ~uid viscosity
j dimensionless coordinate "similarity variable#
P dimensionless net pressure
so far!_eld minimum principal stress
t dimensionless time
C dimensionless ~ow rate
V dimensionless crack opening[

0[ Introduction

Hydraulic fracturing is one of the most important stimulation techniques of the energy industry[
This operation is used to enhance the ~ow of ~uids from oil\ gas and geothermal reservoirs[
Mathematical modeling of the hydraulic fracturing process is performed in order to predict the
fracture response to both reservoir and ~uid properties\ in situ stresses and pumping rate "Perkins
and Kern\ 0850^ Nordgren\ 0861^ Geerstma and Haafkens\ 0868^ Nilson\ 0877#[ Challenging
di.culties in modeling arise from the non!local character of the response of the fracture and the
highly non!linear coupling between the equations governing ~uid ~ow in the fracture and those
which govern rock deformation produced by ~uid pressure[ This problem persists even if\ as in
this paper\ one restricts oneself to the framework of linear elasticity and lubrication theory[

In this paper\ we compare a semi!analytical solution "computable to any required level of
accuracy# of the problem of a hydraulically driven fracture "Carbonell\ 0885^ Carbonell and
Detournay\ 0887#\ with results obtained with the numerical code Loramec "Desroches and Thier!
celin\ 0882#[ The semi!analytical solution is built on the restrictive assumptions of a zero toughness
solid and zero lag between the ~uid and crack front[ Also\ this solution makes use of recent results
obtained by the SCR Geomechanics Group "Desroches et al[\ 0883# regarding the asymptotic
behavior of the solution near the fracture tip[ This near tip solution corresponds to an exact
matching singularity between the lubrication and the elasticity equations\ which di}ers from the
classical results of linear elastic fracture mechanics[
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Fig[ 0[ Two!dimensional ~uid!driven fracture[

The problem under consideration is a hydraulic fracture propagating in an in_nite impermeable
elastic medium under plane strain conditions\ see Fig[ 0[ A far!_eld compressive stress of magnitude
so acts perpendicular to the fracture[ The fracture is driven by an incompressible Newtonian ~uid
injected from a source located at the center of the fracture[ It is assumed that the fracture is in
mobile equilibrium at all time\ and that crack propagation is quasi!static[ Also\ the ~ow of ~uid
in the fracture is modelled using the lubrication approximation[

Given that ~uid is injected into the fracture at a constant volumetric ~ow rate Qo\ we seek to
determine the fracture half!length l as a function of time t\ the crack opening w\ and the ~uid
pressure pf "or the net pressure p � pf−so# as a function of both position "de_ned by the coordinate
x with origin at the center of the fracture# and time t[

The main objective of this comparative study is to evaluate the relevance of the zero toughness
solution to predict the characteristics of a hydraulic fracture propagating in a rock of _nite
toughness[

1[ Self!similar formulation

A self!similar solution for the considered hydraulic fracture problem has recently been obtained
by Carbonell and Detournay "0887#[ This solution "hereafter referred to as CD# is based\ however\
on two additional assumptions] "0# the fracture is completely _lled by the injected ~uid "in other
words\ the ~uid front coincides with the crack tip#^ "1# the solid has a zero fracture toughness[ In
the following\ we outline the mathematical basis of the CD solution[ It is worthwhile to note that
a self!similar solution for the case of zero toughness can be obtained for an injection rate varying
either as a power law or an exponential function of time "Spence and Sharp\ 0874#\ although here
we restrict considerations to a constant injection rate Qo[
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1[0[ Governin` equations

The theory of elasticity provides a relation between the net pressure p"x\ t# � pf"x\ t#−so and
crack width w"x\ t# "Rice\ 0857#

p �
E?
3p g

l

−l

1w"s\ t#
1s

ds
x−s

"0#

where E? � E:"0−n1# is the plane strain modulus written in terms of Young|s modulus E and
Poisson|s ratio n[

The lubrication equation\ or Reynolds equation\ that governs the ~ow of ~uid in the fracture is
given by "Batchelor\ 0856#

1w
1t

�
0

01m

1

1x 0w2 1p
1x1[ "1#

This equation is obtained by combining the continuity equation with Poiseuille law

1w
1t

¦
1q
1x

� 9 q � −
w2

01m

1p
1x

"2#

where q denotes the volumetric ~ow rate\ and m the ~uid viscosity[

1[1[ Initial and boundary conditions

In view of the symmetry of the problem with respect to the position of the source "which
corresponds to the origin of the coordinate\ x � 9#\ the inlet ~ow boundary condition translates
into

q=x�9¦ � −q=x�9− �
Qo

1
at x � 9[ "3#

The conditions at the fracture tips "x � 2l# correspond to a zero crack opening and to no!~ow

w � 9 q � 9 at x � 2l[ "4#

This latter condition can also be translated into a condition on w and p\ in view of eqn "2#

w2 dp
dx

� 9 at x � 2l[ "5#

Due to the symmetry in loading and geometry\ the hydraulic fracture propagates solely in Mode
I[ The assumptions that the fracture is in mobile equilibrium at all times and that the rock has zero
fracture toughness imply that the Mode I stress intensity factor KI is equal to zero[ The stress _eld
ahead of the fracture tip does not exhibit\ therefore\ a square root singularity^ rather\ the following
condition must be satis_ed "Rice\ 0857#]

"l 3 x#−0:1w � 9 at x � 2l[ "6#

Recent investigations of the near tip process have led to the obtention of an exact matching
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singularity between the lubrication and the elasticity equations\ under the conditions that the ~uid
front coincides with the crack tip and that the solid has zero toughness[ For a Newtonian viscous
~uid\ the near!tip singular solutions for the net pressure p� and the crack opening w� are "Desroches
et al[\ 0883#

w�
Lh

� 10:224:5j�
1:2 p�

E?
� −

0

11:221:2j�
0:2

"7#

where the dimensionless coordinate j� and the lengthscale Lh are de_ned as j� � "x−l#:Lh and
Lh � 01 ml¾:E?[ It is important to note that all the tip conditions "4#\ "5# and "6# are automatically
satis_ed with the asymptotic solution "7#[

Finally\ an alternative way to express the inlet ~ow boundary condition "3# is to equate the total
injected volume of ~uid V"t# to the volume of the hydraulic fracture

V � g
l

−l

w ds � Qot[ "8#

1[2[ Dimensional considerations and similarity formulation

We _rst introduce a time scale T and a length scale L[ Here\ T is expressed in terms of the ratio
of the ~uid viscosity over the plane strain modulus\ while L is introduced through the volume of
~uid V injected during this characteristic time T

T �
01m

E?
L � zQoT[ "09#

A dimensionless moving coordinate j and a dimensionless time t are then de_ned as follows

j �
x
l

t �
t
T

[ "00#

We now introduce the scaled fracture length x"t# and the following dimensionless _eld quantities]
the net pressure P"j\ t#\ the ~ow rate C"j\ t#\ and the crack aperture V"j\ t#

x �
l
L

P �
p
E?

C �
qT

L1
V �

w
L

[ "01#

After conversion of variable from the _xed coordinate x to the moving coordinate j\ the governing
equations of the two!dimensional hydraulic fracture problem become

P � −
0

3px g
0

−0

1V
1r

dr

r−j

1V
1t

−j
xþ
x

1V
1j

�
0

x1

1

1j 0V2 1P
1j 1[ "02#

Following Spence and Sharp "0874#\ we now search for self!similar solutions for pressure and
crack opening of the form

V"j\ t# � gt0:2Vj"j# P"j\ t# � t−0:2Pj"j# "03#

as well as a power law expression for the scaled length x"t#
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x"t# � gt1:2 "04#

where the a priori unknown constant g is de_ned in terms of the fracture volume

g−1 � g
0

−0

Vj"r# dr[ "05#

Substituting the above expressions in the governing eqns "02# yields a system of integro!di}erential
equations

Pj � −
0
3p g

0

−0

V?j dr

r−j
"06#

0
2

Vj−
1
2

jV?j �
d
dj

"V2
jP?j# "07#

"with the prime denoting di}erentiation# subject to the following tip conditions

"0 3 j#−0:1Vj � 9 Vj � 9 V2
jP?j � 9 at j � 20[ "08#

It can readily be deduced from the Poiseuille eqn "2# and the above equations that the dimen!
sionless ~ow rate C does not depend on t\ and also can be written as

C � g1Cj"j# � −g1V2
jP?j[ "19#

Finally\ by using the scaling eqns "00# and "01#\ the tip solution "7# can be recast into an
asymptotic solution of the two functions V"j\ t# and P"j\ t# near the end points\ j � 20[ Then\
adopting the power law "04# for the fracture length\ the near tip solution becomes

Vj � 11:220:1"0 3 j#1:2 Pj � −
0

10:22"0 3 j#0:2
for =j20= ð 0[ "10#

1[3[ Method of solution

Determination of the net pressure Pj"j# and crack opening Vj"j# is carried out using a numerical
method\ inspired by the procedure described by Spence and Sharp "0874#[ This method consists in
_rst _nding a representation for Pj and Vj\ such that the elasticity eqn "06# and boundary
conditions "08# are automatically satis_ed[ Furthermore\ the solution F "i[e[ either Pj or Vj# is
expressed as a sum of a {general| and a {particular| source solution\ denoted as F� and F��\
respectively

F"j# � F�"j#¦BF��"j# "11#

where B is a coe.cient[ On the one hand\ the general solution F� has the expected behavior at the
fracture tips but is characterized by a zero pressure gradient at the source j � 9 "and therefore
does not ful_ll the expected behavior near the source eqn "3##[ On the other hand\ the particular
solution F�� is characterized by a jump of the pressure gradient at j � 9 and by a non!singular
behavior at the fracture tips[ Finally\ the general solution F� is represented as an in_nite series of
base functions Fi�"j#\ i[e[
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F�"j# � s
�

i�0

AiFi�"j#

where Ai\ i � 0\ [ [ [ \ � are initially unknown coe.cients\ like B "see expressions for Pj and Vj in
appendix A#[

In the CD solution\ the base functions Fi� are expressed in terms of Jacobi polynomials\ rather
than Chebyshev polynomials as done by Spence and Sharp "0874# who searched for a solution
based on the LEFM square root singularity[ Then\ truncating the in_nite series F�\ an n!order
approximation F "n#"j# for pressure and crack opening is obtained[ Substituting F "n#"j# into the
lubrication equation leads to the formulation of a non!linear algebraic equation in j\ containing
the "n¦0# unknown coe.cients[ These "n¦0# free parameters are then computed by enforcing
satisfaction of the non!linear algebraic equation at a set of "n¦0# collocation points jj\
j � 0[ [ [ n¦0\ see Appendix A[ Note that calculation of the coe.cients carry not only an insig!
ni_cant cost "of the order of 0 min on PC Pentium computer for n � 09#\ but that it needs to be
performed only once[

The quantities g\ Pj"9#\ Vj"9# characterizing the solution are estimated to be g ¹ 9[502\
Pj"9# ¹ 9[435\ Vj"9# ¹ 0[728\ according to the approximation n � 09[

2[ Numerical model

A detailed description of the numerical code Loramec is given by Desroches and Thiercelin
"0882# and Desroches "0887#[ The code can be used to simulate the propagation of either plane
strain or penny!shaped hydraulic fractures under very general conditions\ such as variable injection
rate\ {power!law| rheological behavior of the ~uid "which includes Newtonian behavior#\ di}usion
of ~uid through the fracture walls[ Although Loramec is not the most used model in the industry\
it is the only hydraulic fracturing model the authors are aware of which compare well with carefully
monitored laboratory data "Desroches and Thiercelin\ 0882#[ Furthermore\ Loramec is geared
towards precision and focuses on what happens near the tip of the fracture\ whereas most models
in the industry are designed for speed and the prediction of overall quantities[ A description of the
model relevant to the cases investigated in this paper is presented in Appendix B[

The essential di}erences in the assumptions on which the two solutions are built concern the
modeling of the tip process[ In Loramec\ the fracturing ~uid does not necessarily reach the tip of
the fracture^ a ~uid lag may develop[ The pressure in the lag is taken either as the pore pressure
for permeable rocks or as the fracturing ~uid vapor pressure for impermeable rocks[ If there is a
lag\ the pressure in the lag is known\ and the lag size is unknown[ If there is no ~uid lag\ however\
the pressure at the tip is one of the unknowns[ Finally\ the propagation criterion in Loramec
requires a non!zero fracture toughness\ which can be {small|\ however[

3[ Comparison

3[0[ Numerical simulations

In designing the comparative study\ the input data of the simulations have been chosen in
accordance with expected parameters for a hydraulic stimulation carried out in the _eld[ The input
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data used in the numerical simulations are] Qo � 3×09−2 m1 s−0\ n � 9[04\ so � 49 MPa\ m � 742 cp
"7[42×09−6 MPa s−0#\ E � 14 GPa\ and KIc � 9[990\ 9[0\ 0\ 4 and 09 MPa m−0:1[ The corresponding
values of E?\ T\ and L are] E? � 14[5 GPa\ T � 3×09−09 s and L � 0[154×09−5 m[ Also\ we
introduce the dimensionless toughness K de_ned as

K �
KIc

E?L0:1
[ "12#

Hence\ the values for the dimensionless toughness used in the numerical simulations are]
K � 2[4×09−4\ 2[4×09−2\ 2[4×09−1\ 0[6×09−0 and 2[4×09−0[

Some of the speci_cs of the numerical calculations are given below[ The computational grid
consisted of 32 nodes\ most of them being concentrated near the tip of the fracture[ The com!
putations started at 9[048 s and ended at 0999 s[ The calculations took 185 time steps\ with an
average of 59 iterations per time step to converge onto the solution[ Over the considered time
interval\ the fracture grew from an initial length of 9[3 m to a _nal length of 026 m\ with the
fracture length incrementally increased by 1) at each time step[ The running time for one
simulation was about 14 min on a Sun UltraSparc 0 workstation[

3[1[ Results

Comparison of crack length l"t#\ pressure P"9\ t#\ and fracture opening V"9\ t# at the ~uid
injection point in terms of t are shown in Fig[ 1 for all values of toughness considered[ Interestingly\
the numerical results indicate a power law dependence on time\ which is virtually identical to the
self!similar solution[ These results suggest that the numerical solution follows a self!similar pattern\
at least for the set of parameters considered[ It follows therefore that it is appropriate to compute
from the raw numerical results the {reduced| fracture opening Vj and net pressure Pj according to
eqn "03#\ and to compare these reduced results with the semi!analytical solution[

Comparison between the numerical and semi!analytical solution for toughness K up to
0[6×09−0 shows an excellent agreement between the two solutions[ Representative results for
Pj"j# and Vj"j# computed at di}erent times are shown in Figs 2Ð4 for the cases K � 2[4×09−4\
2[4×09−1 and 0[6×09−0[ However\ plot "c# in Figs 2 and 3 for K ³ 09−1 shows a discrepancy
between the two solutions near the tip at early time due to the presence of the ~uid lag[ "The ~uid
lag decreases in absolute terms with time[# These results suggest that the semi!analytical solution
is capable of capturing the global behavior despite the fact that a ~uid lag is present at the fracture
tip[ The numerical results also indicate that Vj"j# behaves as "0−j#1:2 at an intermediate scale "see\
for example plot "c# in Fig[ 4#[ In other words\ the simulations show evidence that eqn "7# develops
as an intermediate asymptotics for these values of K[

The results for the K � 2[4×09−0 simulation are plotted in Fig[ 5[ The numerical results show
a clear discrepancy with the semi!analytical solution[ At the tip "see plot "c# in Fig[ 5#\ the numerical
results are characterized by Vj"j# behaving as "0−j#0:1 near the tip and at an intermediate scale at
all times[ Hence for this particular simulation\ the CD solution no longer applies\ although the
toughness is only twice the value corresponding to Fig[ 5[ These results imply not only the existence
of a di}erent solution for {high toughness|\ but also a very rapid transition between two solutions[
The excellent agreement observed between the CD solution and the numerical results\ for the set
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Fig[ 1[ Solution at the injection point[
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Fig[ 2[ Net pressure and crack opening pro_le for the case K � 2[4×09−4[
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Fig[ 3[ Net pressure and crack opening pro_le for the case K � 2[4×09−1[
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Fig[ 4[ Net pressure and crack opening pro_le for the case K � 0[6×09−0[
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Fig[ 5[ Net pressure and crack opening pro_le for the case K � 2[4×09−0[
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of simulations carried out for K ¾ 09−0\ suggest that the CD solution\ built on the assumptions
of zero ~uid lag and zero toughness\ has some relevance[

3[2[ Discussion

To cast these observations into a di}erent perspective\ we _rst observe that the power law
dependence on time exhibited by the numerical results imply the same power law dependence on
time for both the viscous dissipation D "D is actually the dissipation scaled by the characteristic
value G � E?L1:T# and the energy rate 1Gl¾ expended in creating new fracture surfaces "G � K1

denotes the dimensionless energy release rate#[ Indeed\

D � dt−0:2 d � −1g1 g
0

9

CjP?j dj "13#

and

1Gl¾�
3
2

K1gt−0:2[ "14#

It is conjectured that the CD solution applies under conditions where the rate of energy dissipated
in the solid to extend the fracture energy is small in comparison with the viscous dissipation in the
~uid[ The condition\ under which the CD solution is expected to appropriately describe the
behavior of a hydrofracture\ can then be stated in terms of a dimensionless number u which is
simply proportional to K1

u �
Gl¾

D
�

3gK1

2d
[ "15#

Values of d\ g and u for the CD solution "K � 9# and the numerical simulations are presented in
Table 0[

Thus in more general terms\ the results of this study "summarized in Table 0# suggest the
existence of three regimes of solution\ which could be discriminated in terms of the dissipation
ratio u]

Table 0
Value of g\ d and u for di}erent K

K g d u

9 9[502 9[397 9
2[4×09−4 9[505 9[251 1[7×09−8

2[4×09−2 9[502 9[258 1[6×09−4

2[4×09−1 9[504 9[272 1[5×09−2

0[6×09−0 9[598 9[330 4[2×09−1

2[4×09−0 9[479 9[298 2[0×09−0

First line corresponds to the semi!analytical solution[
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, u ³ 09−1\ viscosity!dominated regime for which the CD solution applies^
, 09−1 ³ u ³ 09−0\ transition regime^
, u × 09−0\ toughness!dominated regime[

Additional simulations are needed\ however\ to ensure the appropriateness of distinguishing
uniquely the di}erent regimes of the hydraulic fracturing process by means of the dimensionless
ratio u[ Moreover\ a detailed set of simulations is required to explore the behavior of the solution
in the transition regime[

The conclusion\ that the zero!toughness solution is applicable under conditions of {small|
toughness\ is also supported by the solution of a semi!in_nite hydraulic fracture propagating in an
elastic solid with _nite toughness "Garagash and Detournay\ 0887#[ The analysis of this semi!
in_nite fracture shows that the singular zero toughness solution "7# is actually the asymptotic
solution at in_nity[ In other words\ at large enough distance from the tip "increasing with tough!
ness#\ the solution behaves as if the solid had zero toughness and the ~uid was reaching the fracture
tip[ Translated to the case of a _nite fracture\ this result thus suggests that the details of the tip
solution associated with the rock toughness and a ~uid lag becomes inconsequential\ if eqn "7# can
develop as an intermediate asymptotic solution[

4[ Concluding remarks

Numerical simulations of a hydraulic fracture propagating in an impermeable rock exhibit global
self!similarity\ for a constant injection rate[ In particular\ the predicted power law dependence on
time of the net injection pressure and fracture aperture at the injection point\ and fracture length
is well observed in the numerical results[ Furthermore\ there is a very good agreement between the
self!similar and the numerical solution\ under conditions of {small| toughness[

This agreement suggests that the semi!analytical zero toughness solution is applicable to cases
where the rock has a non!zero fracture toughness and a ~uid lag develops\ provided that the ratio
u of the rate of energy dissipation in the solid over the viscous dissipation in the ~uid is less than
09−1[ This study also indicates that the existence of a sizeable ~uid lag has a negligible e}ect\ up
to 4 ½ 09) of the fracture extension\ on the injection pressure and crack aperture at the wellbore[
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Appendix A

Numerical solution for the similarity formulation

The numerical solution of the system eqns "06# and "07# begins with the obtention of a suitable
representation for Pj and Vj[ Following the procedure described by Carbonell and Detournay
"0887#\ Pj and Vj are expressed as the sum of a general and a particular source solution
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Pj"j# � P�"j#¦BP��"j#

Vj"j# � V�"j#¦BV��"j# "A[0#

where B is an as yet undetermined coe.cient[ Both the particular ðP��"j#\ V��"j#Ł and the general
solution ðP�"j#\ V�"j#Ł satisfy the elasticity eqn "06#[

The particular solution\ which is not associated with any stress singularity at the tip\ is introduced
to account for the discontinuity of the pressure gradient at the source

P�� � 1−p=j=

V�� � 3"0−j1#0:1¦1j1 ln b
0−"0−j1#0:1

0¦"0−j1#0:1b[ "A[1#

The general solution P��"j#\ V��"j# is written in the form of an in_nite series of base functions
Pi�"j#\ Vi�"j#

P�"j# � s
�

i�0

AiPi�"j#

V�"j# � s
�

i�0

AiVi�"j# "A[2#

where each base function is expressed in terms of orthogonal Jacobi polynomials as follows

P�i � −
0

3×20:16P"−0:2\0:2#
1i−0 "j#$0

0¦j

0−j1
0:2

¦1%−P"0:2\−0:2#
1i−0 "j#$0

0−j

0¦j1
0:2

¦1%7 "A[3#

V�i �
0

1"1i−0#
ðP"1:2\3:2#

1i−1 "j#"0−j#1:2"0¦j#3:2¦P"3:2\1:2#
1i−1 "j#"0¦j#1:2"0−j#3:2Ł[ "A[4#

An n!order approximation P"n#
j "j#\ V"n#

j "j# to Pj"j#\ Vj"j# is then sought by truncating the series
representation of eqn "A[2# after n terms[ Substituting P"n#

j "j#\ V"n#
j "j# into the lubrication eqn "07#\

leads to the formulation of a non!linear algebraic equation in terms of the "n¦0# unknowns A"n#
i \

i � 0\ n and B"n#[ This equation takes the form

Jl"j\ A"n#
i \ B"n##−Jr"j\ A"n#

i \ B"n## � 9 "A[5#

where Jl and Jr are given by

Jl"j\ A"n#
i \ B"n## � s

n

i�0

A"n#
i $Ii�"j#¦

1
2

jVi�"j#%¦B"n#$I��"j#¦
1
2

jV��"j#%
Jr"j\ A"n#

i \ B"n## � −$s
n

i�0

A"n#
i Vi�"j#¦B"n#V��"j#%

2

$s
n

i�0

A"n#
i Pi�?"j#¦B"n#P��?"j#%[ "A[6#

In the above equations\ Ii�"j# and I��"j# denote two integrals\ respectively de_ned as
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Ii�"j# � g
0

j

Vi�"r# dr "A[7#

I��"j# � g
0

j

V��"r# dr[ "A[8#

The integrals Ii�"j# and i��"j# can be solved analytically^ their close!form expressions are given by
Carbonell "0885#[

Finally\ a non!linear least!squares collocation method is used to solve for the n¦0 unknown
coe.cients A"n#

i \ i � 0\ n and B"n#[ The numerical algorithm consists in seeking the unknown
coe.cients such that eqn "A[5# is satis_ed at each of a set of n¦0 collocation points ji\ i � 0\ n¦0[
The coe.cients A"n#

i \ i � 0\ n and B"n# are determined by minimizing the objective function D "A"n#
i \

B"n## de_ned as

D � s
n¦0

j�00
Jl"jj\ A"n#

i \ B"n##

Jr"jj\ A"n#
i \ B"n##

−01
1

[ "A[09#

Note that the solution corresponds not only to the minimum of the least!squares error D\ but also
to the vanishing of D[

The minimization is carried out using the steepest descent method[ The convergence tests for
the minimization are

=A"n#
i\k−A"n#

i\k¦0= ³ o "A[00#

and

Dk¦0"A"n#
0\k\ [ [ [ \ A"n#

n\k\ B"n#
k # � Dk¦0"A"n#

0\k¦0\ [ [ [ \ A"n#
n\k¦0\ B"n#

k¦0# "A[01#

where the {equality| in eqn "A[01# has to be understood at the machine precision[ In the above\ the
subscript k characterizes the value of a coe.cient at the kth iteration\ and o is an arbitrary small
number[

In general\ calculations have been done using values of o � 09−5 for the convergence test\ with
rapid convergence in kth ¾ 09 iterations[ Numerical calculations have shown that\ for any initial
guess of coe.cients A"n#

i\9 and B"n#
9 \ to minimize the objective function D "A"n#

i \ B"n##\ yields the same
minimum point or _nal set of coe.cients[ It implies that D "A"n#

i \ B"n## has a well!de_ned minimum[

Appendix B

Numerical model "Loramec#

Preamble
Loramec is a numerical model for the propagation and closure of hydraulic fractures of simple

radial and plane strain geometries "Desroches and Thiercelin\ 0882^ Desroches\ 0887#[ We detail
here only the hypotheses and implementation related to the propagation of a plane strain fracture
driven by a Newtonian ~uid in an impermeable medium[
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The physical processes modelled by Loramec include the opening of the fracture through ~uid
pressure\ the creation of new fracture surface\ the motion of the ~uid in the fracture and the
percolation of the ~uid into the solid through the fracture walls "which is neglected here#[ The
following assumptions are made] the fractured material is in_nite\ isotropic and linear elastic^ the
fracture is considered as a surface of discontinuity in the elastic medium across which there is a
jump in normal displacement corresponding to the aperture of the fracture^ the fracture is planar
and propagates perpendicularly to the minimum principal stress direction^ the fracture propagation
is quasi!static^ the fracturing ~uid is incompressible and its rheological behavior is Newtonian^ the
~uid does not necessarily reach the tip of the fracture] there is a possibility of a dry zone\ or ~uid
lag\ at the fracture tip[

The solution of the model consists of\ at any time after ~uid injection has started\ the extension
of the fracture\ the position of the ~uid front\ the distribution of ~uid pressure and fracture width
along the fracture extension[

Formulation
The algorithm is based on an integro!variational approach for the elasticity equation\ relating

the gradient of the fracture aperture to the net pressure of the ~uid in the fracture "Nedelec\ 0879#[
It is obtained through a variational formulation on the elasticity equation written as an integral
equation[ Like in a classical boundary value problem\ the reduction of the problem to the dimension
of the fracture surface is conserved[ The singularity of the kernel is reduced to a Cauchy singularity[
Finally\ provided that the Mode I stress intensity factor KI is strictly positive\ this formulation
ensures the correct behavior of the fracture width in the vicinity of the tip of the fracture without
resorting to special elements[

Taking into account the symmetry of the problem\ the integro!variational formulation of the
elasticity equation for that particular geometry is

E?
3p g

l

9 g
l

9

ln b
x¦x?
x−x?b

1w
1x

1w¼
1x?

dx dx? � g
l

9

p"x?#w¼ "x?# dx? "B[0#

where w¼ is a virtual fracture opening _eld[
The lubrication eqn "1# is multiplied by a space weighting function and integrated over the wet

length of the fracture[ Following the work by Bonnerot and Jamet "0863\ 0868# on Stefan problems\
the resulting equation is multiplied by a weighting function depending on time only and integrated
on the time step[ Although this operation results into a much more complex formulation\ it also
yields great stability to the solution[

The creation of new fracture surface is taken into account by computing the mode I stress
intensity factor KI[ The stress intensity factor is computed using the BuecknerÐRice "Bueckner\
0869^ Rice\ 0861# weight function^ for the symmetric plane strain fracture of concern\ KI can be
expressed as]

KI � 1X l
p g

l

9

p"x#

zl1−x1
dx[ "B[1#

The following set of initial:boundary conditions\ including the propagation criterion\ is also
considered[
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, The far!_eld minimum principal stress so is assumed to be known and constant in space and
time[ The constant rate of ~uid injection into the fracture\ Qo\ is also given[

, The aperture of the fracture at the tip is zero[
, If there is a dry zone "between the fracture tip and the ~uid front#\ the pressure in this zone is set

to either the far!_eld formation pressure for high permeability rocks\ or as the fracturing ~uid
vapor pressure for low permeability rocks[

, If the computed size of the dry zone is zero\ the ~uid pressure at the tip is a priori unknown and
is computed as part of the solution[

, If the fracture is propagating\ the mode I stress intensity factor KI is equal to the fracture
toughness of the material KIc\ and the speed of the ~uid at the ~uid front is equal to the speed at
which the ~uid front itself moves "Stefan boundary condition#[

Implementation considerations
Two sets of independent variables are considered for the description of space and time[ The _rst

set consists of "x\ t# where x is the distance measured from the center of the wellbore along one
wing of the fracture and t is the time with its origin taken at the start of ~uid injection[ The second
set consists of normalized quantities better suited to the adopted discretization strategy] "j?\ t#\
where j? is a normalized distance equal to 9 at the wellbore radius and 0 at the ~uid front of the
fracture\ and t is a normalized time equal to 9 at instant tn and 0 at instant tn¦0[

The width and the ~uid pressure are discretized in the stretching space j? and in time t[ A
stretching mesh with a constant number of isoparametric elements is used[ This approach has
numerous advantages] it avoids the need for adding or collapsing elements in the course of the
simulation[ Also\ each element in the wet zone of the fracture keeps a constant position in the
normalized system of coordinates "j?\ t#[ The numerical coe.cients needed to evaluate integrals
over a particular element need therefore to be computed only once\ resulting in signi_cant speed
up of the computation[

The equations mentioned above are mapped from the "x\ t# to the "j?\ t# system of variables[ A
Galerkin formulation is then used for both the elasticity and the ~uid ~ow equation\ together with
a linear interpolation in time and a quadratic interpolation in j?[

Given the complete solution at time tn\ the solution scheme consists of three loops[ In the lowest
level loop\ the ~uid ~ow and the elasticity equations are solved concurrently for nodal width and
pressure with a NewtonÐRaphson scheme[ In the intermediate level loop\ the propagation criterion
is checked\ and the tip boundary condition modi_ed accordingly] either the size of the ~uid lag is
changed\ or the pressure at the tip is changed if the size of the lag is zero[ In the top level loop\ the
global mass balance is checked and the time step modi_ed accordingly[

Once the _nal solution for a particular time step is found\ it is recorded and the fracture is
advanced by a fraction of its length "between 0 and 4)\ usually about 1)# and the solution
scheme started again[

Note that the algorithm presented above is working on the basis that the complete solution is
known at the previous time stage[ This raises the problem of _nding the solution for the _rst
considered time stage t0[ In fact\ as noted in this paper\ the behavior of the width and pressure
pro_les exhibits self!similarity for a constant injection rate[ This self!similarity is used for this _rst
time stage to obtain a formulation depending on w"t0# and pf"t0# only[ Once the _rst solution is
obtained\ the solution scheme switches to the two points recurrence scheme described previously[
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